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The Two Tables

Let S : Fn2 → F
n
2 be an S-Box.

Definition (DDT)

The Di�erence Distribution Table of S is a matrix of size 2n × 2n such that

DDT[a,b] = #{x ∈ Fn2 | S (x ⊕ a) ⊕ S (x ) = b}.

Definition (LAT)

The Linear Approximations Table of S is a matrix of size 2n × 2n such that

LAT[a,b] = #{x ∈ Fn2 | x · a = S (x ) · b} − 2n−1 =
WS (a,b)

2

7 / 42



Introduction
Overview of S-Box Reverse-Engineering Methods

The TU-Decomposition
A Decomposition of the 6-bit APN Permutation

Conclusion

Statistical Analysis of the DDT/LAT
Summary of Di�erent Techniques
Structural A�acks Against Block Ciphers

The Two Tables

Let S : Fn2 → F
n
2 be an S-Box.

Definition (DDT)

The Di�erence Distribution Table of S is a matrix of size 2n × 2n such that

DDT[a,b] = #{x ∈ Fn2 | S (x ⊕ a) ⊕ S (x ) = b}.

Definition (LAT)

The Linear Approximations Table of S is a matrix of size 2n × 2n such that

LAT[a,b] = #{x ∈ Fn2 | x · a = S (x ) · b} − 2n−1 =
WS (a,b)

2

7 / 42



Introduction
Overview of S-Box Reverse-Engineering Methods

The TU-Decomposition
A Decomposition of the 6-bit APN Permutation

Conclusion

Statistical Analysis of the DDT/LAT
Summary of Di�erent Techniques
Structural A�acks Against Block Ciphers

The Two Tables

Let S : Fn2 → F
n
2 be an S-Box.

Definition (DDT)

The Di�erence Distribution Table of S is a matrix of size 2n × 2n such that

DDT[a,b] = #{x ∈ Fn2 | S (x ⊕ a) ⊕ S (x ) = b}.

Definition (LAT)

The Linear Approximations Table of S is a matrix of size 2n × 2n such that

LAT[a,b] = #{x ∈ Fn2 | x · a = S (x ) · b} − 2n−1 =
WS (a,b)

2

7 / 42



Introduction
Overview of S-Box Reverse-Engineering Methods

The TU-Decomposition
A Decomposition of the 6-bit APN Permutation

Conclusion

Statistical Analysis of the DDT/LAT
Summary of Di�erent Techniques
Structural A�acks Against Block Ciphers

Coe�icient Distribution in the DDT

If an n-bit S-Box is bijective, then its DDT coe�icients behave like
independent and identically distributed random variables following a
Poisson distribution:

Pr [DDT[a,b] = 2z] =
e−1/2

2zz
.

Always even, ≥ 0
Typically between 0 and 16 (for n =)

Lower is be�er.
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Coe�icient Distribution in the LAT

If an n-bit S-Box is bijective, then its LAT coe�icients behave like
independent and identically distributed random variables following this
distribution:

Pr [LAT[a,b] = 2z] =

(
2n−1
2n−2+z

)(
2n
2n−1

) .

Always even, signed.

Typically between -40 and 40 (for n = 8).

Lower absolute value is be�er.
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Looking Only at the Maximum

δ log2 (Pr [max(D) ≤ δ ])

14 -0.006

12 -0.094

10 -1.329

8 -16.148

6 -164.466

4 -1359.530

DDT

` log2 (Pr [max(L) ≤ `])

38 -0.084
36 -0.302
34 -1.008
32 -3.160
30 -9.288
28 -25.623
26 -66.415
24 -161.900
22 -371.609

LAT

Probability that the maximum coe�icient in the DDT/LAT of an 8-bit
permutation is at most equal to a certain threshold.
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Taking Number of Maximum Values into Account
P
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 Pr[max = 28]

 Pr[max = 26]

Pr[max = 28, #28 ≤ N28]
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Application of this Analysis?

We applied this method on the S-Box of Skipjack.
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What is Skipjack?

Type Block cipher

Bloc 64 bits

Key 80 bits

Authors NSA

Publication 1998 (classified at first)
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Skipjack uses F , a permutation of F82 with max(LAT) = 28 and #28 = 3.
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What Can We Deduce?

F has not been picked uniformly at random.

F has not been picked among a feasibly large set of random S-Boxes.

Its linear properties were optimized (though poorly).

The S-Box of Skipjack was built
using a dedicated algorithm.
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A�acks Against SPN (1/2)

S0,0 S0,1 ... S0,n/m−1

L0

S1,0 S1,1 ... S1,n/m−1

L1

S2,0 S2,1 ... S2,n/m−1

j 0 0

y j0 y j1 y jn/m−1

Zero sums

⊕2m−1
j=0 S2,i (y

j
i ) = 0, for all i . Repeat for di�erent constant then solve

system [Biryukov, Shamir, 2001]
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A�acks Against SPN (2/2)

Works against more than 3 rounds if deg(S (AS )r−1) is low enough.

S
P

N
 d
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e 
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u
n
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0

20

40

60
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100

120

Number of rounds

0 1 2 3 4 5 6 7 8

2

Degree Bound (SPN) [Biryukov et al., 2017]

Let σ operate onm bits, deg(σ ) =m − 1, and n be the block size.
Rhoughly speaking, deg

(
S (AS )r−1

)
< n − 1 as long as

(m − 1) br /2c < n .
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A�acks Against Feistel Networks

Degree Bound (Feistel Network) [Perrin and Udovenko, 2016]

Let {F i }i<r be permutations of Fn/22 of degree d and let F r (F ) denote the
r -round n-bit Feistel Network with round function F i . If

d br /2c−1 + d dr /2e−1 < n ,

then some degree n − 1 terms in the ANF of F r (F ) are missing.
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What Does it Take to Have Full Degree?

The degree based distinguishers for SPNs and Feistel networks can be seen
as particular cases of this lemma.

Lemma
Let F : Fn2 → F2 be a Boolean function and let G : Fn2 → F

n
2 be a

permutation. Then:

deg(F ◦G ) = n − 1 =⇒ deg(F ) + deg(G−1) ≥ n .
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What is the TU-Decomposition?

The TU-decomposition is a decomposition algorithm working against vast
groups of algorithms: 3-round Feistel, Dillon’s APN permutation, SAS, ...

S TU-decomposition
T

U

µ

η

T and U are mini-block ciphers ; µ and η are linear permutations.
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TU-Decomposition in a Nutshell

Let L be the LAT of the target S : Fn2 → F
n
2 .

1 Identify vector spacesU andV of dimension
n/2 such that:

L (a,b) = 0, ∀(a,b) ∈ U ×V .

2 Deduce linear permutations µ ′ and η′ such that

L (µ ′(a),η′(b)) = 0, ∀(a,b) ∈ Fn/22 × Fn/22

3 Built new LAT L ′ such that

L ′(a,b) = L (µ ′(a),η′(b))

and recover S ′ with LAT L ′. Deduce µ,η.

T

U

µ

η

S’
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Bootstrapping TU-Decomposition

OK... But how do we findU andV?

For now: we just look at the LAT and hope for the best!
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Kuznyechik/Stribog

Stribog

Type Hash function

Publication [GOST, 2012]

Kuznyechik

Type Block cipher

Publication [GOST, 2015]

Common ground

Both are standard symmetric primitives in Russia.

Both were designed by the FSB (TC26).

Both use the same 8 × 8 S-Box, π .
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The LAT of the S-Box of Kuznyechik
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Final Decomposition Number 1

ω

σ

ϕ �

ν1ν0

I�

α

T

U

� Multiplication in F24

α Linear permutation

I Inversion in F24

ν0,ν1,σ 4 × 4 permutations

ϕ 4 × 4 function

ω Linear permutation
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Conclusion for Kuznyechik/Stribog?

The Russian S-Box was built like a
strange Feistel...

... or was it?

Belarussian inspiration

The last standard of Belarus [Bel. St. Univ., 2011] uses an 8-bit S-box,

somewhat similar to π ...

... based on a finite field exponential!
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Final Decomposition Number 2 (!)

ω ′

⊗−1

�

q′

logw,16

T

0 1 2 3 4 5 6 7 8 9 a b c d e f
T0 0 1 2 3 4 5 6 7 8 9 a b c d e f
T1 0 1 2 3 4 5 6 7 8 9 a b c d e f
T2 0 1 2 3 4 5 6 7 8 9 a b c d f e
T3 0 1 2 3 4 5 6 7 8 9 a b c f d e
T4 0 1 2 3 4 5 6 7 8 9 a b f c d e
T5 0 1 2 3 4 5 6 7 8 9 a f b c d e
T6 0 1 2 3 4 5 6 7 8 9 f a b c d e
T7 0 1 2 3 4 5 6 7 8 f 9 a b c d e
T8 0 1 2 3 4 5 6 7 f 8 9 a b c d e
T9 0 1 2 3 4 5 6 f 7 8 9 a b c d e
Ta 0 1 2 3 4 5 f 6 7 8 9 a b c d e
Tb 0 1 2 3 4 f 5 6 7 8 9 a b c d e
Tc 0 1 2 3 f 4 5 6 7 8 9 a b c d e
Td 0 1 2 f 3 4 5 6 7 8 9 a b c d e
Te 0 1 f 2 3 4 5 6 7 8 9 a b c d e
Tf 0 f 1 2 3 4 5 6 7 8 9 a b c d e
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The Big APN Problem

Definition (APN function)

A function f : Fn2 → F
n
2 is Almost Perfect Non-linear (APN) if

f (x ⊕ a) ⊕ f (x ) = b

has 0 or 2 solutions for all a , 0 and for all b.

Big APN Problem

Are there APN permutations operating on Fn2 where n is even?
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On the Bu�erfly Structure

βx3

x1/3

�
α

⊕

⊕

βx3

x3

�
α

⊕

⊕

T

U

Definition (Open Bu�erfly H3
α ,β

)

This permutation is an open bu�erfly.

Lemma
Dillon’s permutation is a�ine-equivalent
to H3

w,1, where Tr (w ) = 0.
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CCZ-equivalence (1/2)

Definition (CCZ-equivalence)

Let F and G be functions of Fn2 . They are CCZ-equivalent if there exists a
linear permutation L of Fn2 × F

n
2 such that

{(
x , F (x )

)
,∀x ∈ Fn2

}
=

{
L
(
x ,G (x )

)
,∀x ∈ Fn2

}

Properties

CCZ-equivalence preserves:

the distribution of the coe�icients in the LAT (Walsh spectrum),

the distribution of the coe�icients in the DDT.

It does not preserve:

the position of the DDT/LAT coe�icients

the algebraic degree.
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Closed Bu�erflies

�
α

⊕

x3

βx3 ⊕

�
α

⊕

x3

βx3 ⊕

Definition (Closed bu�erfly V3
α ,β

)

This quadratic function is a closed
bu�erfly.

Lemma (Equivalence)

Open and closed bu�erflies with the same
parameters are CCZ-equivalent.
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Bu�erflies and Feistel Networks

When α = 1, bu�erflies can be greatly simplified.

βx3⊕

x1/3 ⊕

βx3⊕

βx3 x3 βx3

⊕

⊕⊕
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Some Properties of Bu�erflies

Theorem (Properties of bu�erflies [Canteaut et al., 2017])
Let V3

α ,β and H3
α ,β be bu�erflies operating on 2n bits, n odd. Then:

deg
(
V3
α ,β

)
= 2,

if n = 3, Tr (α ) = 0 and β + α 3 ∈ {α, 1/α }, then
max(DDT ) = 2, max(W ) = 2n+1 and deg

(
H3
α ,β

)
= n + 1 ,

if β = (1 + α )3, then
max(DDT ) = 2n+1, max(W ) = 2(3n+1)/2 and deg

(
H3
α ,β

)
= n ,

otherwise,

max(DDT ) = 4, max(W ) = 2n+1 and deg
(
H3
α ,β

)
∈ {n, n + 1}

and deg
(
H3
α ,β

)
= n if and only if

1 + α β + α 4 = (β + α + α 3)2 .
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Conclusion

We can recover the majority of known S-Box structures
and derive new results about Skipjack and Kuznyechik.

We can generalize the permutation of Dillon et al...

but we can prove that our generalizations are never APN
(except in the known case).

There are still S-Boxes with unknown building strategies
(CMEA, CSS)!
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The Last S-Box

14 11 60 6d e9 10 e3 2 b 90 d 17 c5 b0 9f c5
d8 da be 22 8 f3 4 a9 fe f3 f5 fc bc 30 be 26
bb 88 85 46 f4 2e e fd 76 fe b0 11 4e de 35 bb
30 4b 30 d6 dd df df d4 90 7a d8 8c 6a 89 30 39
e9 1 da d2 85 87 d3 d4 ba 2b d4 9f 9c 38 8c 55
d3 86 bb db ec e0 46 48 bf 46 1b 1c d7 d9 1b e0
23 d4 d7 7f 16 3f 3 3 44 c3 59 10 2a da ed e9
8e d8 d1 db cb cb c3 c7 38 22 34 3d db 85 23 7c
24 d1 d8 2e fc 44 8 38 c8 c7 39 4c 5f 56 2a cf
d0 e9 d2 68 e4 e3 e9 13 e2 c 97 e4 60 29 d7 9b
d9 16 24 94 b3 e3 4c 4c 4f 39 e0 4b bc 2c d3 94
81 96 93 84 91 d0 2e d6 d2 2b 78 ef d6 9e 7b 72
ad c4 68 92 7a d2 5 2b 1e d0 dc b1 22 3f c3 c3
88 b1 8d b5 e3 4e d7 81 3 15 17 25 4e 65 88 4e
e4 3b 81 81 fa 1 1d 4 22 0 6 1 27 68 27 2e
3b 83 c7 cc 25 9b d8 d5 1c 1f e5 59 7f 3f 3f ef
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Proof of Full Degree Condition

If deg(F ◦G ) = n − 1, then ∃i ≤ n such that
⊕

x ∈Ci (F ◦G ) (x ) = 1.

Let Ii : Fn2 → F2 be such that Ii (x ) = 1⇔ x ∈ Ci :⊕
x ∈Ci

(F ◦G ) (x ) =
⊕
x ∈Fn2

F
(
G (x )

)
× Ii (x ) ,

and let y = G (x ). Then:⊕
x ∈Ci

(F ◦G ) (x ) =
⊕
y∈Fn2

F (y) × Ii
(
G−1 (y)

)
.

This sum is equal to 1 if and only if x 7→ F (x ) × Ii
(
G−1 (x )

)
has degree n.

Ii is a�ine (Ii (x ) = 1 + xi ). Thus, the sum can be equal to 1 only if

deg(F ) + deg(G−1) ≥ n .
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