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If you only know the Look-Up Table of an S-Box,
what can you do?

Random? Structured?

Was it picked uniformly at Was it built using a particular
random? structure ?



S-Box?

Introduction
In this Talk
What is an S-Box?
S-Box Design

An S-Box is a small non-linear function mapping m bits to n
usually specified via its look-up table.



Introduction
In this Talk
What is an S-Box?
S-Box Design

S-Box?

An S-Box is a small non-linear function mapping m bits to n
usually specified via its look-up table.

m Typically,n = m,n € {4, 8}
m Used by many block ciphers/hash functions/stream ciphers.

m Necessary for the wide trail strategy.
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Example

' = (252, 238, 221, 17, 207, 110, 49, 22, 251, 196, 250, 218, 35, 197, 4, 77, 233,
119, 240, 219, 147, 46, 153, 186, 23, 54, 241. 187, 20, 205, 95, 193, 249, 24, 101,
90, 226, 92, 239, 33, 129, 28, 60, 66, 139, 1, 142, 79, 5, 132, 2, 174, 227, 106, 143,
160, 6, 11, 237, 152, 127, 212, 211, 31, 235, 52, 44, 81, 234, 200, 72, 171, 242, 42
104, 162, 253, 58, 206, 204, 181, 112, 14, 86, 8, 12, 118, 18, 191, 114, 19, 71, 156,
183, 93, 135, 21, 161, 150, 41, 16, 123, 154, 199, 243, 145, 120, 111, 157, 158, 178,
177, 50, 117, 25, 61, 255, 53, 138, 126, 109, 84, 198, 128, 195, 189, 13, 87, 223,
245, 36, 169, 62, 168, 67, 201, 215, 121, 214, 246, 124, 34, 185, 3, 224, 15, 236,
222,122, 148, 176, 188, 220, 232, 40, 80, 78, 51, 10, 74, 167, 151, 96, 115, 30, 0
98, 68, 26, 184, 56, 130, 100, 159, 38, 65, 173, 69, 70, 146, 39, 94, 85, 47, 140, 163,
165, 125, 105, 213, 149, 59, 7, 88, 179, 64, 134, 172, 29, 247, 48, 55, 107, 228, 136,
217, 231, 137, 225, 27, 131, 73, 76, 63, 248, 254, 141, 83, 170, 144, 202, 216, 133,
97, 32, 113, 103, 164, 45, 43, 9, 91, 203, 155, 37, 208, 190, 229, 108, 82, 89, 166
116, 210, 230, 244, 180, 192, 209, 102, 175, 194, 57, 75, 99, 182).

Screen capture from [GOST, 2015].
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S-Box Design

Motivation

A malicious designer can easily hide a structure in an S-Box.

To keep an advantage in implementation (WB crypto)...
... or an advantage in cryptanalysis (backdoor)?
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The Two Tables

Let S : F) — FJ be an S-Box.
Definition (DDT)
The Difference Distribution Table of S is a matrix of size 2" X 2" such that

DDT[a,b] = #{x € F} | S (x ® a) ® S(x) = b}.

Definition (LAT)
The Linear Approximations Table of S is a matrix of size 2" x 2" such that

(Wg(a, b)

LAT[a,b] = #{x € F} |x-a=S(x) b} —2"" = .
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Coefficient Distribution in the DDT

If an n-bit S-Box is bijective, then its DDT coefficients behave like
independent and identically distributed random variables following a
Poisson distribution:

e—1/2

Pr[DDT[a, b] = 2z] = o
z
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Coefficient Distribution in the DDT

If an n-bit S-Box is bijective, then its DDT coefficients behave like
independent and identically distributed random variables following a
Poisson distribution:

e1/2
Pr [DDT[a, b] = 2z]

27z

m Always even, > 0
m Typically between 0 and 16 (for n =)

m Lower is better.
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Coefficient Distribution in the LAT

If an n-bit S-Box is bijective, then its LAT coefficients behave like
independent and identically distributed random variables following this
distribution:
zn—l
(2n—2+z)

Pr[LAT[a,b] = 22] =
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Coefficient Distribution in the LAT

If an n-bit S-Box is bijective, then its LAT coefficients behave like
independent and identically distributed random variables following this
distribution:
zn—l
(2n—2+z>

Pr[LAT[a,b] = 22] =

m Always even, signed.
m Typically between -40 and 40 (for n = 8).

m Lower absolute value is better.
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Looking Only at the Maximum

s log, (Pr [max(D) < 8]) ¢ log, (Pr [max(L) < ¢])

38 -0.084
14 -0.006 36 -0.302
12 -0.094 34 -1.008

32 -3.160
10 -1.329 30 -9.288
8 -16.148 28 -25.623
6 -164.466 26 66415

24 -161.900
4 -1359.530 22 -371.609

DDT LAT

Probability that the maximum coefficient in the DDT/LAT of an 8-bit
permutation is at most equal to a certain threshold.
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Looking Only at the Maximum

s log, (Pr [max(D) < 8]) ¢ log, (Pr [max(L) < ¢])

38 -0.084
14 -0.006 36 -0.302
12 -0.094 34 -1.008

32 -3.160
10 -1.329 30 -9.088
8 -16.148 28 -25.623
6 -164.466 20 0041

24 -161.900
4 -1359.530 22 -371.609

DDT LAT

Probability that the maximum coefficient in the DDT/LAT of an 8-bit
permutation is at most equal to a certain threshold.

10/42
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Conclusion

Taking Number of Maximum Values into Account

207
301
—
N
a0
Sl
>
2
=
=
E —— Pr[max = 28]
2 50T —— Pr[max = 26]
[aW —0— Pr[max = 28, #28 < Nj]
601
~70 -+ ‘ : : : | | 1 |
0 5 10 15 20 25 30 35
Nosg
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Application of this Analysis?

We applied this method on the S-Box of Skipjack.
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What is Skipjack?

Type Block cipher
Bloc 64 bits
Key 80 bits
Authors NSA
Publication 1998 (classified at first)

Wi w3

Rule A

counter »{ @D
I 3 BTE ST
Rule B counter

13/42
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Reverse-Engineering the S-Box of Skipjack

Skipjack uses F, a permutation of F; with max(LAT) = 28 and #28 = 3.
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Reverse-Engineering the S-Box of Skipjack

Skipjack uses F, a permutation of F; with max(LAT) = 28 and #28 = 3.

Probability (log,)

-20T

=30+

-40+

-50+

60T

—— Pr[max - 28]
—— Pr[max = 26]
—0— Pr[max = 28, #28 < Ny]

-70
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Overview of S-Box Reverse-Engineering Methods

Reverse-Engineering the S-Box of Skipjack

Skipjack uses F, a permutation of F; with max(LAT) = 28 and #28 = 3.

40

207
-30+
—_
3
%)
S -40+
=
>
£
B8
= —— Pr[max - 28]
] =50 —— Pr{max = 26]
o —o— Pr[max = 28, #28 < Ny
601
~701 ! ! ! | | | | |
0 5 10 15 20 25 30 35
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Pr [max(LAT) = 28 and #28 < 3] ~ 27°°
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What Can We Deduce?

m F has not been picked uniformly at random.
m F has not been picked among a feasibly large set of random S-Boxes.

m Its linear properties were optimized (though poorly).
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What Can We Deduce?

m F has not been picked uniformly at random.
m F has not been picked among a feasibly large set of random S-Boxes.

m Its linear properties were optimized (though poorly).

The S-Box of Skipjack was built
using a dedicated algorithm.
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Conclusion on Skipjack
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S0,0 So,1 So,n/m-1
N R 2 N
| Lo
1 1 1
S1,0 Si1 Si,n/m-1
N R 2 N
| Ly
1 1 1
S2,0 S2,1 Sa.n/m-1
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Attacks Against SPN (1/2)

u\\

mm\ DDT/LAT
nt Technique

structura Anacks Against Block Clphers

J 0 0
4 4 4
S0,0 So,1 So,n/m-1
N R 2 N

| L
1 1 1
S1,0 Si1 Si,n/m-1
N R 2 N

| Ly
1 1 1
S2,0 S2,1 Sa.n/m-1
S7 S7

%
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Attacks Against SPN (1/2)

\u\\\\ of the DDT/LAT

nt Technique

structura Anacks Against Block Clphers

J 0 0
4 4 4
S0,0 So,1 So,n/m-1
N R 2 N
| Lo
S1,0 Si1 St,n/m-1
N R 2 N
| F
Zero sums i i ;L
S2,0 S2,1 Sa.n/m-1
T T

@zm_ng ,(y]) =0, for all i.
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Attacks Against SPN (1/2)

J 0 0
4 4 4
S0,0 So,1 So,n/m-1
N R 2 N
| Lo
S1,0 Si1 St,n/m-1
N R 2 N
| Ly
Zero sums i i ;L
S2,0 S2,1 Sa.n/m-1
87 v 87

yé y{ yfl/m—l

EB?;HO_I Sg,i(y{:) =0, for all i. Repeat for different constant then solve
system [Biryukov, Shamir, 2001]
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Conclusion

Attacks Against SPN (2/2)

Works against more than 3 rounds if deg(S(AS)"™!) is low enough.

120

100

SPN degree bound

Number of rounds
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Attacks Against SPN (2/2)

Works against more than 3 rounds if deg(S(AS)"™!) is low enough.

120

100

60

SPN degree bound

10

0 1 2 3 4 5 6 7 8
Number of rounds

Degree Bound (SPN) [Biryukov et al., 2017]
Let o operate on m bits, deg(c) = m — 1, and n be the block size.

Rhoughly speaking, deg (S(AS)”I) < n-—1aslong as

(m-1)"2 <n.

19/42
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Attacks Against Feistel Networks

Degree Bound (Feistel Network) [Perrin and Udovenko, 2016]

Let {F;}i<, be permutations of Fg/z of degree d and let ¥ (F) denote the
r-round n-bit Feistel Network with round function F;. If

dlr/2i=1 4 grrin-1

then some degree n — 1 terms in the ANF of 77 (F) are missing.

20/42
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What Does it Take to Have Full Degree?

The degree based distinguishers for SPNs and Feistel networks can be seen
as particular cases of this lemma.

Lemma

Let F : F) — F, be a Boolean function and let G : F} — F} be a
permutation. Then:

deg(FoG)=n-1 = deg(F)+deg(G)=n.
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Definition of the TU-decomposition
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Definition of the TU-decomposition

Jhelltabecopestion Application to the Last Russian Standards

What is the TU-Decomposition?

The TU-decomposition is a decomposition algorithm working against vast
groups of algorithms: 3-round Feistel, Dillon’s APN permutation, SAS, ...

4 1
U
T <
S TU-decomposition 3
—_ U
n
4 3+

T and U are mini-block ciphers ; iz and 7 are linear permutations.
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TU-Decomposition in a Nutshell

Let £ be the LAT of the target S : F} — F.

H Identify vector spaces U/ and V' of dimension 4 4
n/2 such that: H
L(a,b) =0, Y(a,b) € U xV .
. o , T 4
Deduce linear permutations ;" and 7’ such that
L (@), (0)) =0, V(a,b) € Fy/2 x By -
n
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tion of the 6-bit APN Per

TU-Decomposition in a Nutshell

Let £ be the LAT of the target S : F} — F.

H Identify vector spaces U/ and V' of dimension
n/2 such that:

L(a,b) =0, Y(a,b) € U xV .
Deduce linear permutations ;" and 7’ such that
L' (a), 7' (b)) =0, ¥(a,b) € Fy/* x F}/*
Built new LAT £’ such that
L'(a,b) = L1 (a),n' (b))

and recover S” with LAT £’. Deduce /., 1.

Definition of the TU-decomposition
Application to the Last Russian Standards

{ {
u
T 4
D U
n
+ +
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Conclusion

TU-Decomposition in a Nutshell

Let £ be the LAT of the target S : F} — F.

H Identify vector spaces U/ and V' of dimension
n/2 such that:

L(a,b) =0, Y(a,b) € U xV .
Deduce linear permutations ;" and 7’ such that
L' (a), 7' (b)) =0, ¥(a,b) € Fy/* x F}/*
Built new LAT £’ such that
L'(a,b) = L(4'(a), (b))

and recover S” with LAT £’. Deduce /., 1.

Definition of the TU-decomposition
Application to the Last Russian Standards

4 4
!
T 4 :
: s :
: D U |
n
$ $
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Bootstrapping TU-Decomposition

OK... But how do we find U/ and V?

For now: we just look at the LAT and hope for the best!
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Stribog
Type Hash function
Publication [GOST,2012]
Kuznyechik

Type Block cipher
Publication [GOST, 2015]
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Application to the Last Russian Standards

25

42



Introduction

Overview of S-Box Reverse-Engineering Methods
The TU-Decomposition

A Decomposition of the 6-bit APN Permutation
Conclusion

Definition of the TU-decomposition
Application to the Last Russian Standards

Kuznyechik/Stribog

Stribog
Type Hash function
Publication [GOST,2012]
Kuznyechik

Type Block cipher
Publication [GOST, 2015]

Common ground

m Both are standard symmetric primitives in Russia.
m Both were designed by the FSB (TC26).
m Both use the same 8 x 8 S-Box, .

25/42
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Applying one Linear Layer
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Applying two Linear Layers
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The TU-Decomposition

Final Decomposition Number 1

Definition of the TU-decomposition
Application to the Last Russian Standards

© Multiplication in Fys
a Linear permutation
I Inversion in Fy

Vo, V1,0 4 X 4 permutations
¢ 4 x4 function

o Linear permutation
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The Russian S-Box was built like a
strange Feistel...
... or was it?

Belarussian inspiration

m The last standard of Belarus [Bel. St. Univ., 2011] uses an 8-bit S-box,
m somewhat similar to ...

® ... based on a finite field exponential!
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The Big APN Problem

Definition (APN function)
A function f : F} — F7 is Almost Perfect Non-linear (APN) if

fxeaef(x)=0b

has 0 or 2 solutions for all a # 0 and for all b.

Big APN Problem

Are there APN permutations operating on F} where n is even?
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Dillon et al’s Permutation

Only One Known Solution!

For n = 6, Dillon et al. found an APN permutation.
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Dillon et al’s Permutation

Only One Known Solution!

For n = 6, Dillon et al. found an APN permutation.

It is possible to make a TU-decomposition!
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On the Butterfly Structure

The Big APN Problem and its Only Known Solutions

A Decomposition of the 6-bit APN Permutation OnlBuicrlics
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Definition (Open Butterfly Hzﬁ)

This permutation is an open butterfly.

Lemma

Dillon’s permutation is affine-equivalent
toH> ., where Tr (w) = 0.

w, 1’
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CCZ-equivalence (1/2)

Definition (CCZ-equivalence)

Let I and G be functions of F}. They are CCZ-equivalent if there exists a
linear permutation L of F}} X F} such that

{(x, F(x)),Vx € Fg’} = {L(x, G(x)),Vx € Fg}

Properties

CCZ-equivalence preserves:
m the distribution of the coefficients in the LAT (Walsh spectrum),
m the distribution of the coefficients in the DDT.

It does not preserve:
m the position of the DDT/LAT coefficients

m the algebraic degree.
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Closed Butterflies

Definition (Closed butterfly V?

i This quadratic function is a closed

L—so—d |—o—9p butterfly.
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On Butterflies

A Decomposition of the 6-bit APN Permutation

Closed Butterflies
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Definition (Closed butterfly V? 5

This quadratic function is a closed
butterfly.

Lemma (Equivalence)

Open and closed butterflies with the same
parameters are CCZ-equivalent.
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Butterflies and Feistel Networks

When « = 1, butterflies can be greatly simplified.
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)T(
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A Decomposition of the 6-bit APN Permutation OnlButterflies

Some Properties of Butterflies

Theorem (Properties of butterflies [Canteaut et al., 2017])
Let Vi,ﬁ and HZ’/’, be butterflies operating on 2n bits, n odd. Then:
3 -
B deg (Va,ﬁ) =2,
m ifn=3Tr(a)=0andf + a>® € {a, 1/}, then

max(DDT) = 2, max(‘W) = 2! and deg (H;ﬁ) =n+1,

m iff=(1+a) then
max(DDT) = 2"+, max(W) = 26"+D/2 and deg (Hi /7’) =n,

m otherwise,

max(DDT) = 4, max(‘W) = 2"*! and deg (Hi,ﬂ) e{n,n+1}
and deg (fo,ﬂ) = n if and only if

1+af+a* = (B+ra+a’)?.
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Conclusion

Conclusion

Conclusion

m We can recover the majority of known S-Box structures
and derive new results about Skipjack and Kuznyechik.

m We can generalize the permutation of Dillon et al...

m but we can prove that our generalizations are never APN
(except in the known case).

m There are still S-Boxes with unknown building strategies
(CMEA, CSS)!
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Proof of Full Degree Condition
If deg(F o G) = n—1, then Ji < n such that @xeci(F o G)(x) = 1.

Let I; : F) — F; be such that I;(x) =1 © x € C;:

Preox = B F(cw) x i),

x€eC; x€eFy

and let y = G(x). Then:

Prec)x = Brwxu(c'w).

xeC; yeF}

This sum is equal to 1if and only if x — F(x) X I,-(G_l(x)) has degree n.
I; is affine (I;(x) = 1 + x;). Thus, the sum can be equal to 1 only if

deg(F) +deg(G™ ) > n.
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